
© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1161

AN EFFECTIVE SCHEME TO MANAGE

STORAGE IN SMARTPHONE DEVICE BY

REMOVING DUPLICATE FILES

Ammar Asaad, Ali A.Yassin

Computer Department, University of Basrah, Education College for Pure Sciences, Iraq.

Abstract: During the last decade, mobile usage has increased dramatically. Due to the potential of mobile devices, technology is

now widely used by many people. The Internet with the mobile, gives the mobile many additional features like file sharing

(images, videos, audios, documents) by social media network apps, exchanging information among relatives and friends. This

also means that mobiles receive numerous similar files via applications. As a result, there are many drawbacks, such as save

duplicate files in the device's storage and low performance in (CPU, RAM, and battery). In this paper, we suggest and design an

improved scheme to eliminate duplicate files. The duplicate files are eliminated using a Message Digest 5 (MD5) hash function,

the American Standard Code for Information Interchange (ASCII), and Fast Fibonacci. These methods are used to generate a

unique code that can remove the duplicate files in a fast and efficient way. As a result, we got a good result in storage and

performance of the mobile device.

Key-words: Duplicate files; Mobile Device; Hash Code, MD5, Fast Fibonacci.

1. Introduction

Simple mobile phones can be utilised for simple computations, while smart devices are used for more complex

computations [1]. Mobile devices play a key role in users’ daily lives. Mobile devices are overtaking the place of laptops and PCs

in all areas of life, including peoples’ daily work, communications, and bank transactions work, communications, and bank

transformation [2]. In view of social media networks and their high computational complexity, there are many challenges for users

in terms of storage space, performance, and energy consumption [1, 2]. Smart device hardware has the ability to perform massive

computing tasks, such as image processing, gaming, checking email, bank transfers, transaction authorisations, and other

operations [1]. Many people cannot imagine their daily lives without a mobile phone device, or without the internet. Despite these

properties, mobile devices still have drawbacks, such as being unable to handle complex tasks like face recognition and games

with high-definition graphics[1, 3]. The amount of digitally stored data is growing at a high rate of approximately ten times per five

years, overtaking the storage space available. With the increasing use of smartphones such as mobile phone devices and the

improvement and development in this field, there is still a low storage problem with the mobile devices [4, 5]. The usage of these

devices for a long time causes them to lose storage space, the performance of the CPU decreases, and energy is consumed [6]. One

of the solutions to the storage problem is removing duplication files from the mobile phone devices [7].There are many fields

based on deleting duplication files, such as paging, image matching, pattern recognition, and similarity of files. Sung-hun et al. [7]

suggested a system implemented on a mobile device that is used like mobile apps to reduce the CPU overhead due to the memory

deduplication based on the contents of each memory page. Miller et al. [8] proposed a strategy called Cross-layer I/O-based Hints

to extend the memory deduplication scanners and then overcome the deduplication overhead rapidly. Furthermore, many authors

focused on the main memory of mobile phones, which is one of the most important resources. Byeoksan et al. [9] developed a

system known as MemScope that identifies which memory segment contains duplicate memory pages by examining the page

table and the memory content. Nohhyun et al. [10] provided a framework to remove duplication files based on dataset contents.

In the field of cloud computing, Waraporn et al. [11] presented an effective data deduplication system for cloud storage to

manage storage efficiency and to enhance the performance in the cloud storage environment. Their system computes hash code

for each file in cloud storage by applying one-way. The hash functions are implemented in many fields, for example, file coding,

authentication, and security. Benjamin et al. [12] described three techniques (summary vector, stream-informed segment layout,

and locality preserved caching) to build a fingerprint for each file based on the SHA-1 hash function. They employed these

techniques in the deduplication files to remove bottlenecks in the storage.

Currently, with the rapid development in cloud computing and mobile devices, there is a platform to support low latency

network access and extra storage called mobile cloud computing (MCC) [13]. Moreover, MCC can provide mobile devices with

extra storage based on pay-as-you-go within the cloud computing principle, but customers have to pay for this technique [14, 15].

The duplicate files remain in the storage of the cloud service provider.

Marques et al. [5] suggested a good scheme to delete duplicate files depending on their type. The method works well with

known files and suffers to deal with new files that do not exist in the index file of their work [13]. Haustein et al.’s patent [16]

involves selecting the deduplication method depending on the file type and computing the deduplication rate, and the deletion of

duplicate files is done by the server side. Ryan et al. [13] presented a scheme to reduce energy consumption and the amount of data

by detecting duplicate files. However, this scheme initially suffered from low duplicate detection performance and deduplication

throughput for a few files. Although their work focused on using cloud storage to deduplicate files, the duplicate files are still in

devices’ storage. Several researchers focused on detection of duplicate data by using hash functions such as MD5 and SHA-256
[12, 17]. These schemes cannot face the collisions growing the length of the signature increase and the processing time increased

with the size of signatures [18]. Ammar et al. [19] proposed a good scheme to delete duplicate images depending on MD5 hash

function and Huffman code to generate unique code to remove duplicate image. In this paper, we present a scheme that has been

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1162

applied as mobile apps to remove the duplication files imported to mobile through social media applications such as Facebook,

WhatsApp, Viber or mobile’s. Our work focus to use hash function and Fibonacci code to build unique code for each image and

overcomes the drawbacks of collisions grows as the size of the signature increases. However, the scheme generates a good search

index file used to insert image or ignore in the repeating case. Our experimental results relied on two types of mobile devices

“Samsung and Huawei. Moreover, our scheme has the safe cost of consumption energy of battery and less used for both RAM

and CPU of the mobile device. Furthermore, our work can manage the storage of mobile and Cloud storage (based on some of

Google’s application, such as Google drive, Google photos) by removing duplicating files.

2. Materials and methods

We explain the algorithms and methods that are used in our work to achieve the scheme’s goals.

2.1 Message Digest 5 Algorithm (MD5)
MD5 is one of the most commonly used algorithms to compress data files such as images, videos, and audios. The output of this

algorithm is a fixed value (128 bit) when the algorithm is implemented once or many times on the same data. This algorithm was

developed by Rivest and is considered as a simple way to compute the MD5 value. The MD5 processes 512-bit blocks and breaks

them into 32-bit words. It includes 64 rounds. The MD5 steps are as follows. The first step is adding the bits to the block to equal

the value of (448 mod 512), starting with 1, followed by 0’s. The second step is adding the length of the message to the value

(448 mod 512). The third step sets the MD5 register values (A, B, C, D), each one 32 bits (hexadecimal number). The fourth step

is the heart of the algorithm; it has four pressure functions, and each of these pressure functions has logical operations [20-22].

Figuer1 illustrates the mechanism of MD5.

Figure 1: The mechanism and the main steps of implementing MD5 algorithm.

2.2 Fibonacci Code Generation
Data compression has been used in several fields, especially in data processing. There are various algorithms treated with several

files, such as text, documents, images, and video. This method encodes an integer number to binary using Fibonacci

representation. Zeckendorf’s theorem is the base of this method. Fibonacci code is mostly used to compress small numbers

because it is suitable for small numbers [23-25]. We will use this algorithm to generate a unique code for each file by calculating the

fast Fibonacci code for each ASCII code. The main steps of this method are as follows:

- Input an integer number (no).

- Find the most significant Fibonacci number F (number in the Fibonacci series first chose); F > no.

- Find f <= no (f number in the Fibonacci series).

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1163

- If f <= no add 1 to the code string and make no = no - f otherwise add 0 to the code string. Then move f to a Fibonacci

number lower than f, and repeat the step (4) until (no = 0) and append 1 to the end. The output binary numbers in Figure

2 explains the mechanism of fast Fibonacci.

Figure 2: Shows each character and its code.

2.3 Hashing Search Method
Hashing search is a method used to generate a unique code for each item and save this item in the hash table to reduce

search time. As an example, we assume that we have items and then want to compute a unique code for each item to reduce the

search time. In this technique, the unique codes are converted into small numbers by using equations [26], so we used this method

to reduce the time for searching for duplicate files. The two main steps of the hashing technique are as follows:

- Each item is transformed into an integer number by the hash equation.

- Each item is stored in the hash table based on the integer number generated previously [26]. Figure 3 shows the how this

method works.

Figure 3: The mechanism of hash search method

3. Removing Duplicate Files Based on MFC Scheme

The MFC scheme proposed includes three phases: building an index file, removing duplicate files, and daily phase. The

functions of each phase are as follows: the ‘building an index file’ phase works to create IF (See Table 1) for all files. The second

phase is used to remove all duplicate files from the device. The final phase functions daily by continuously operating phases. All

these phases play a crucial role in removing duplicate files received daily from social media apps. We propose a good method by

using the MD5 hash function to improve performance. The main objective of our scheme is to delete duplicated files, such as

H
h

a
sh

fu
n

ct
io

n

2
2

1
5
4

0

Hash function = 221540 % 10

The new item add here

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1164

photos, and movies received from different social media apps. Additionally, we utilise the MD5 hash function and fast Fibonacci

coding in order to build a unique code that is used to remove duplicate files.

3.1 Building Index File phase

This phase creates an index file to prepare everything for the next phases. The following steps explain the working of

this phase:

- Generate two sets represented of all mobile’s files 𝑆 = {𝑓𝑖𝑙1, 𝑓𝑖𝑙2, … 𝑓𝑖𝑙𝑛}, moreover, their paths 𝑃 = {𝑝1 , 𝑝2, … 𝑝𝑛}.
- Build a unique code for each file (𝑓𝑖𝑙𝑒𝑖 ∈ 𝑆) based on MD5 and Fast Fibonacci coding mentioned in the section 2.1 and

2.2. Figure demonstrates the process of generating a unique code.

𝐻𝑖 = 𝐻(𝑓𝑖𝑙𝑖) … (𝟏)

𝑼𝒏𝒊_𝒄𝒐𝒅𝒆i = ∑ febo(ASCII(𝐻𝑖(𝑗)))n
j=1 … (𝟐)

The index file (𝐼𝐹) consists of the file path, unique code, size of file, feature vector for image file, and the received file date for

each file. Algorithm 1 and figure 5 refers to the mechanism of creating 𝐼𝐹.

Table 1: Notification of symbols

Algorithm 1 Creating Index File

Input: n where n is number of file path P saved in the device

Output: Index File (IF)

Compute 𝐻1 based on Equation Eq (1)

Compute 𝑈𝑛𝑖_𝑐𝑜𝑑𝑒1 based on Equation Eq (2)

𝐶𝑟𝑒𝑎𝑡𝑒_𝐹𝑖𝑟𝑠𝑡_𝑅𝑒𝑐𝑜𝑟𝑑 (p1, 𝑈𝑛𝑖_𝑐𝑜𝑑𝑒1, Size(p1), 𝑓𝑖𝑙_𝑑𝑎𝑡𝑒)

For 𝒊 = 𝟐 to 𝒏 Do

 Compute 𝐻𝑖 as in Equation (Eq 1)

 Compute 𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖 as in Equation (Eq 2)

IF (𝑆𝑒𝑎𝑟𝑐ℎ_𝐼𝐹 (𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖 , 𝐼𝐹) ==True)

 𝐷𝐸𝐿_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒 (𝑝𝑖)

 𝑈𝑝𝑑𝑎𝑡𝑒_𝐼𝐹();

Else

 𝐶𝑟𝑒𝑎𝑡𝑒_𝑁𝑒𝑤_𝑅𝑒𝑐𝑜𝑟𝑑 (𝑈𝑛𝑖𝑐𝑜𝑑𝑒 𝑖
 , 𝑝𝑖 , 𝑆𝑖𝑧𝑒(𝑝𝑖))

End IF

 End for

 End Algorithm 1 Creating Index File

Symbol Description

MHC Coding based on MD5 and Huffman code.

𝐹𝐼𝐿𝑖 The file that saves inside the mobile device.

𝑆 Set of files𝐹𝐼𝐿𝑖 .

𝑝𝑖 , 𝑃 𝑝𝑖 are meaning the 𝐹𝐼𝐿𝑖’𝑠 path while the 𝑃 the set of 𝐹𝐼𝐿’𝑠 path.

𝐼𝐹 Index file has 𝑝𝑖 of 𝐹𝐼𝐿𝑖 , and it is details.

𝐻 MD5 hash function, Hash code for 𝐹𝐼𝐿𝑖 .

ASCII code ASCII code function.

𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖 The unique code for 𝐹𝐼𝐿𝑖 .

𝐶𝑟𝑒𝑎𝑡𝑒_𝐹𝑖𝑟𝑠𝑡_𝑅𝑒𝑐𝑜𝑟𝑑() Function to create first record in the index file.

𝑆𝑒𝑎𝑟𝑐ℎ_𝐼𝐹() Function to check 𝐹𝐼𝐿𝑖 in the 𝐼𝐹.

𝐶𝑟𝑒𝑎𝑡𝑒_𝑁𝑒𝑤_𝑅𝑒𝑐𝑜𝑟𝑑 () Function for creating a new record in 𝐼𝐹 (𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖, 𝑝𝑖 ,Size(𝑝𝑖)).

𝐷𝐸𝐿_𝑓𝑟𝑜𝑚_𝐷𝑒𝑣𝑖𝑐𝑒 () Function to detect duplicate 𝐹𝐼𝐿𝑖 .

𝐺𝑒𝑡 𝑁𝑒𝑤𝑓𝑖𝑙𝑒𝑠() Function for get all new files.

𝐺𝑒𝑡_𝑓𝑖𝑙𝑒() Function to get file.

MFC Coding based on MD5, Fibonacci code.

𝑓𝑒𝑏𝑜 ()

Function to compute the Fibonacci code for ASCII code

𝑓𝑖𝑙_𝑑𝑎𝑡𝑒 The date of creation file.

𝑈𝑝𝑑𝑎𝑡𝑒_𝐼𝐹() Function for update.

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1165

Figure 4: The process of generating a unique code based on MD5 and Fibonacci.

Figure 5: The flowchart for MFC scheme.

3.2 Remove Duplicate Files Phase
This phase works to remove all duplicate files based on their codes generated in the first phase. Additionally, this phase is

applied automatically to remove all duplicated files received daily via social media networks. Algorithm 2 demonstrates the

working of this phase.

Algorithm 2 Remove duplicate files

Input: 𝑛, 𝑃 where 𝑛 is the number of the new files;

Output: reduce storage space and update IF

For 𝒊 = 𝟏 to 𝒏 Do

 Compute 𝐻𝑖 as in Equation Eq (1)

 Compute 𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖 as in Equation Eq (2)

IF (𝑆𝑒𝑎𝑟𝑐ℎ_𝐼𝐹 (𝑈𝑛𝑖_𝑐𝑜𝑑𝑒𝑖 , 𝐼𝐹) ==True)

 𝐷𝐸𝐿_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒 (𝑝𝑖)

 𝑈𝑝𝑑𝑎𝑡𝑒_𝐼𝐹();

Else

 𝐶𝑟𝑒𝑎𝑡𝑒_𝑁𝑒𝑤_𝑅𝑒𝑐𝑜𝑟𝑑 (𝑈𝑛𝑖𝑐𝑜𝑑𝑒 𝑖
 , 𝑝𝑖 , 𝑆𝑖𝑧𝑒(𝑝𝑖))

End IF

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1166

End For

End Algorithm 2 Remove duplicate files.

3.3 Daily Phase

 This phase is considered the most critical phase because it prevents the accumulation of duplicate files in the mobile

device’s storage. This phase operates all previous phases daily. Figure 6 and Figure 7 show the added and removed images,

respectively. The figure above explains the steps of adding/removing a received file. After computing a unique code for an image,

we used search hash then checked whether it was in the index file.

Figure 6: The main processes represented by the image, generating the code, checking IF and making the decision, to add a

new file to IF.

Figure 7: The main processes represented by the image from social media apps, generating the code, checking IF and making the

decision to delete the image from mobile’s storage.

4. The Experimental Results

In this part, the experiment results are outlined to explain the usefulness of our work. Several devices’ files are utilised in

this section to provide an in-depth analysis of the efficiency of our proposed scheme. Our work will implement the removal of the

repeated files based on file matching.

Matches found between new files and files stored in the index file were based on standard matching. So, all redundant files

were removed from storage. Throughout the paper, the proposed mobile application used Intel Core i5-2450M CPU @ 2.50GHz

250GHz, 8 GB RAM, a Windows 7 Enterprise operating system and Android Studio 3.3.1. Moreover, the specifications of the

mobile app applied to the two mobile phones are as follows:

Depending on this number, the appropriate

table is selected as well as the storage or

deletion process.

Tables 0 - 9
DB

279033 %10 = 3

Not found in

table 3 so we

add it to the

table

Code generation

Table 3

Depending on this number, the appropriate table

is selected as well as the storage or deletion

process.

Tables 0 - 9
DB

Table 3

336063 %10 = 3

Found it in

table 3 so we

remove it

from mobile

storage

Code generation

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1167

- HUAWEI CUN-U29, RAM 956.52 MB, internal storage 4.15 GB with an external storage 8 GB, battery 2200mAh, and

Android version 5.1(Lollipop_MR1).

- Galaxy A5 (2017) SM-A520F, Android version 8.0(Oreo), battery 3000mAh, processor arm64-v8a 8 core, and total

RAM 2815 MB.

4.1 Time of Index File Creation
For the purpose of experimentation and verification, experiments were conducted using 957 and 2816 original files in

Huawei and Galaxy A5 devices respectively. Tables (2 and 3) show the performance of creation index files for two devices.

Table 2: The creation time for coding based on MD5 and Fibonacci code scheme in Huawei device.

Table 3: The creation time for coding based on MD5 and Fibonacci code scheme Samsung Galaxy A5 (2017) SM-A520F device.

4.2 DailyكPhase
The proposed scheme was implemented through mobile apps (Figure 8) over several days. This was done in order to apply

the primary operations, such as detecting and removing redundant files alongside adding new files. Error! Reference source not

found.4 describes the central operations including the addition of files to the index file over five days. Figures (9, 10, 11, and 12)

explain the results of our scheme applied in search, storage and performance.

Group Samsung Galaxy A5 2017

file number Time to generate file code Size of files

0 284 files 7.425 s 290482 kb

1 289 files 10.612 s 415534 kb

2 255 files 9.651 s 373361 kb

3 295 files 8.301 s 325203 kb

4 294 files 8.002 s 308358 kb

5 284 files 9.601 s 383633 kb

6 285 files 9.15 s 360646 kb

 7 258 files 4.88 s 182609 kb

 8 282 files 7.831 s 297154 kb

9 290 files 24.422s 986751 kb

Total 2816 files 99.875 s

3923731 kb

Group HUAWEI CUN-U29

file number Time to generate file code Size of files

0 93 files 7.539 s 129284 kb

1 100 files 9.114 s 161625 kb

2 82 files 5.414 s 89093 kb

3 89 files 5.632 s 90076 kb

4 97 files 8.281 s 140703 kb

5 99 files 5.246 s 83335 kb

6 108 files 5.419 s 87238 kb

 7 79 files 4.06 s 62301 kb

 8 99 files 7.232 s 118083 kb

9 111 files 8.04s 131194 kb

Total 957 files 65.977

1092932 kb

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1168

Table 4: The main operations for daily phase.

Figure 8: Removing Duplicate files Scheme.

Figure 9: Compares between the proposed search and the ordinary search for duplicate files.

Figure 10: Shows the performance result by apply specific operations for two types of devices.

Day Received Add Remove

1 29 23 6

2 20 19 1

3 29 17 12

4 31 20 11

5 25 9 16

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1169

Figure 11: storage management results after implemented our scheme on HUAWEI (a) removing duplicate

files

, (b) removing similarity images.

5. Conclusions

One of the essential things in mobile devices is to keep the mobile works best and without any effect on the user. We

proposed a new scheme for storage management by removing duplicate files and near-duplicate images using file coding. We

have used a one-way hash function (MD5), and Fast Fibonacci code to generate unique-code. Our proposed scheme was able to

preserve mobile storage and energy and enhance the processing of mobile devices. The proposed mobile applications were

created and installed on two android mobile phone devices. Our scheme executed on two devices (Galaxy A5 (2017) SM-A520F

and HUAWEI CUN-U29) using real-world data and get a better result in removing these duplicate files in fast and efficient. For

future studies, we will use more than one factor, such as the enhancement performance of processor, keeping the battery capacity,

and increasing size of memory space to make the mobile device work better. Another idea for faster processing might be to use

cloud computing to overcome the limitations in the mobile device storage.

6. References

[1] R. A. Aldmour, "Mobile cloud computing for reducing power consumption and minimising latency," Anglia Ruskin

University, 2018.

[2] H. Atre, K. Razdan, and R. K. Sagar, "A review of mobile cloud computing," in 2016 6th International Conference-

Cloud System and Big Data Engineering (Confluence), 2016, pp. 199-202.

[3] N. Lee, C. Kim, W. Choi, M. Pyeon, and Y. Kim, "Development of indoor localization system using a mobile data

acquisition platform and BoW image matching," KSCE Journal of Civil Engineering, vol. 21, pp. 418-430, 2017.

[4] J. F. Gantz, "The Diverse and Exploding Digital Universe-An Updated Forecast of Worldwide Information Growth

Through 2011," An IDC White Paper Sponsored by EMC, 2008 2008.

[5] L. Marques and C. J. Costa, "Secure deduplication on mobile devices," in Proceedings of the 2011 workshop on open

source and design of communication, 2011, pp. 19-26.

(b) (a)

Figure 12: storage management results after implemented our scheme on Galaxy A5 (a) removing

duplicate files, (b) removing similarity images.

http://www.jetir.org/

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2002167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1170

[6] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, "Energy cost models of smartphones for task offloading to the

cloud," IEEE Transactions on Emerging Topics in Computing, vol. 3, pp. 384-398, 2015.

[7] S.-h. Kim, J. Jeong, and J. Lee, "Selective memory deduplication for cost efficiency in mobile smart devices," IEEE

Transactions on Consumer Electronics, vol. 60, pp. 276-284, 2014.

[8] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa, "{XLH}: More Effective Memory Deduplication

Scanners Through Cross-layer Hints," in Presented as part of the 2013 {USENIX} Annual Technical Conference

({USENIX}{ATC} 13), 2013, pp. 279-290.

[9] B. Lee, S. M. Kim, E. Park, and D. Han, "MemScope: analyzing memory duplication on android systems," in

Proceedings of the 6th Asia-Pacific Workshop on Systems, 2015, p. 19.

[10] N. Park and D. J. Lilja, "Characterizing datasets for data deduplication in backup applications," in IEEE International

Symposium on Workload Characterization (IISWC'10), 2010, pp. 1-10.

[11] W. Leesakul, P. Townend, and J. Xu, "Dynamic data deduplication in cloud storage," in 2014 IEEE 8th International

Symposium on Service Oriented System Engineering, 2014, pp. 320-325.

[12] B. Zhu, K. Li, and R. H. Patterson, "Avoiding the Disk Bottleneck in the Data Domain Deduplication File System," in

Fast, 2008, pp. 1-14.

[13] R. N. Widodo, H. Lim, and M. Atiquzzaman, "SDM: Smart deduplication for mobile cloud storage," Future Generation

Computer Systems, vol. 70, pp. 64-73, 2017.

[14] T. Liu, F. Chen, Y. Ma, and Y. Xie, "An energy-efficient task scheduling for mobile devices based on cloud assistant,"

Future Generation Computer Systems, vol. 61, pp. 1-12, 2016.

[15] E. Ahmed, A. Gani, M. Sookhak, S. H. Ab Hamid, and F. Xia, "Application optimization in mobile cloud computing:

Motivation, taxonomies, and open challenges," Journal of Network and Computer Applications, vol. 52, pp. 52-68, 2015.

[16] N. Haustein, C. A. Klein, U. Troppens, and D. J. Winarski, "Method of and system for adaptive selection of a

deduplication chunking technique," ed: Google Patents, 2009.

[17] D. Meister and A. Brinkmann, "Multi-level comparison of data deduplication in a backup scenario," in Proceedings of

SYSTOR 2009: The Israeli Experimental Systems Conference, 2009, p. 8.

[18] Y. Won, R. Kim, J. Ban, J. Hur, S. Oh, and J. Lee, "Prun: eliminating information redundancy for large scale data

backup system," in 2008 International Conference on Computational Sciences and Its Applications, 2008, pp. 139-144.

[19] A. Asaad and A. A. Y. Alamri, "A New Scheme for Removing Duplicate Files from Smart Mobile Devices," Cihan

University-Erbil Scientific Journal, vol. 3, pp. 5-13, 2019.

http://www.jetir.org/

